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suggests that cardiac dysfunction, arrhythmias, cardiomy-
opathy, and congestive heart disease could be direct con-
sequences of obesity and leptin resistance, i.e., fatty acid 
(FA) overload of cardiomyocytes and lipid accumulation 
in the heart ( 1, 2 ). Studies performed on humans using 
magnetic resonance spectroscopy indicate that cardiomy-
ocyte fat correlates well with impaired diastolic fi lling, 
even in seemingly asymptomatic obese volunteers ( 2 ). 
One of the proposed reasons is that excess FAs or/and 
their metabolites, i.e., ceramides, induce apoptosis of car-
diomyocytes, which is a direct cause of lipotoxic cardio-
myopathy and heart failure ( 2, 3 ). The important role for 
ceramide-induced apoptosis in obesity-related cardiomy-
opathies has been shown in many animal models, including 
leptin-insensitive ZDF rats ( 4 ), leptin-defi cient ob/ob mice 
( 5, 6 ), and a mouse model of heart disease induced by car-
diomyocyte-specifi c overexpression of acyl-CoA synthase ( 7 ). 
Many maneuvers that reduce ectopic deposition of lipids, 
i.e., exercise, caloric restriction, and troglitazone, were 
shown to signifi cantly improve cardiac function in obesity, 
which additionally implies that steatosis might be a pri-
mary reason for cardiac dysfunction ( 2, 8 ). 

 Stearoyl-CoA desaturase (SCD) is the rate-limiting en-
zyme catalyzing the biosynthesis of monounsaturated FAs 
and has been shown to be a key regulatory factor of body 
adiposity ( 9 ). Mice with a targeted disruption in the SCD1 
gene have increased energy expenditure and insulin sensi-
tivity and are resistant to diet-induced obesity ( 10, 11 ). 
SCD1 is involved in regulation of ceramide metabolism. 
Lack of SCD1 reduces the mRNA level and activity of ser-
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 Obesity-related heart disease, the most serious com-
plication of human obesity, generally is attributed to co-
existing disorders such as coronary artery disease and 
hypertension. However, an increasing body of evidence 
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ing SCD1 +/ �  ;ob/+ were inter-bred to produce set of ob/
ob;SCD1  � / �   mice that were identifi ed by PCR using appropriate 
DNA primers. Mice were maintained on a 12:12 h dark-light cycle 
and fed a normal nonpurifi ed diet (5008 test diet; PMI Nutrition 
International, Richmond, IN). The breeding of these animals 
was in accordance with the protocols reviewed and approved by 
the Animal Care Research Committees of the University of 
Wisconsin-Madison. Male mice of each group (N = 6) at 24 weeks 
of age were used in the study. Animals were euthanized 2 days 
after complete echocardiographic examination was performed. 
Heart was rapidly excised, and LVs were dissected and fl ash frozen 
in liquid nitrogen. Fat pads were also collected and weighed. 

 Echocardiography 
 Transthoracic echocardiography was performed using a Sonos 

5500 ultrasonograph with a 12 MHz transducer (Philips). Nonin-
vasive acquisition of two-dimensional guided M-mode images at 
the tip of papillary muscles and Doppler studies were recorded 
on anesthetized mice (50 mg/kg ketamine). The thickness of the 
posterior and anterior walls of the LV chamber and the LV cham-
ber diameter during systole and diastole were measured using 
the leading edge-to-leading edge convention. All parameters 
were measured over at least three consecutive cardiac cycles. 
These parameters were used to calculate LV mass and fractional 
shortening as previously described ( 19 ). Pulse-wave Doppler was 
used to measure the velocity of blood through the mitral and 
aortic valves. From these images, heart rate and the time between 
closure of the mitral valve and the opening of the aortic valve 
were calculated. 

 Blood sampling 
 Mice were euthanized by cervical dislocation. Blood was col-

lected aseptically by direct cardiac puncture and centrifuged 
(13,000  g , 5 min, 4°C) to collect plasma. Plasma cholesterol, TG, 
FFA, insulin, and glucose levels were measured by using com-
mercial kits (Roche Applied Science, Indianapolis, IN; Linco 
Research, St. Charles, MI; Wako Chemicals, Richmond, VA; and 
Sigma, St. Louis, MO). 

 Isolation and analysis of RNA 
 Total RNA was isolated from hearts of WT, ob/ob, and ob/

ob;SCD1  � / �   mice using TRIzol reagent (Invitrogen, Carlsbad, 
CA) and then treated with DNase. cDNA was prepared by reverse 
transcription with random hexamer primers and amplifi ed by 
PCR using gene-specifi c primers in the presence of SYBR Green 
(Applied Biosystems, Foster City, CA) on an ABI Prism 7500 Fast 
Instrument. Relative abundance of SCD1, SCD4, peroxisome 
proliferator-activated receptor (PPAR) � , DAG acyltransferase 
(DGAT), glycerol-3-phosphate acyltransferase (GPAT), FA trans-
locase CD36 (CD36), FA transport protein (FATP)-1, PPAR � , 
carnitine palmitoyltransferase 1 (CPT1), acyl-CoA oxidase 
(ACO), LCB1, and LCB2 mRNA was calculated by normalizing to 
cyclophilin. Primer sequences are available upon request. 

 SCD activity assay 
 Microsomes were isolated from hearts of WT, ob/ob, and ob/

ob;SCD1  � / �   mice by differential centrifugation and suspended 
in a 0.1 M potassium phosphate buffer (pH 7.2). SCD activity was 
assayed with 3  � M [ 14 C]stearoyl-CoA (American Radiolabeled 
Chemicals, St. Louis, MO), 2 mM NADH, and 100  � g of mi-
crosomal protein ( 15 ). After 5 min of incubation, 200  � l of 2.5 M 
KOH in 75% ethanol was added, and the reaction mixture was 
saponifi ed at 85°C for 1 h. The samples were cooled and acidifi ed 
with 280  � l of formic acid. FFA were extracted with 700  � l of 
hexane and separated on a 10% AgNO 3 -impregnated TLC plate 

ine palmitoyltransferase (SPT), the rate-limiting enzyme 
of de novo ceramide synthesis. Reduced SPT activity to-
gether with decreased long-chain fatty acyl-CoA levels 
(mainly palmitoyl-CoA) leads to reduced ceramide con-
tent in oxidative muscles of SCD1  � / �   mice ( 12 ). SCD1 de-
fi ciency also reduces ceramide synthesis in skeletal muscles 
of ob/ob mice. Moreover, SCD1 is a major target gene of 
leptin in liver and was found to be specifi cally repressed 
during leptin-mediated weight loss, and leptin-defi cient 
ob/ob mice lacking SCD1 showed markedly reduced adi-
posity despite higher food intake ( 13 ). In addition, SCD1 
defi ciency completely corrects the hypometabolic pheno-
type and hepatic steatosis of leptin-defi cient ob/ob mice, 
thus mimicking the effect of leptin treatment ( 13 ). 

 Three isoforms of SCD are expressed and regulated in a 
hormone-dependent fashion in the heart ( 14 ), the mo-
lecular and metabolic implications of which are practically 
unknown. Our recent study showed that the lack of SCD1 
decreases FA uptake and oxidation while increasing glu-
cose transport and oxidation in the heart ( 15 ). This shift 
in cardiac substrate utilization from FA to glucose is caused 
by upregulation of insulin signaling, decreased FA avail-
ability, and reduced expression of FA oxidation genes in 
the heart ( 15 ). Also, lipogenesis is decreased in the heart 
of SCD1  � / �   mice, which is accompanied by a reduction in 
intracellular FA and triglyceride (TG) content ( 15 ). We 
have also shown that the activity of SCD is signifi cantly in-
creased in the heart of leptin-defi cient ob/ob mice ( 14 ), 
characterized by pathologic left ventricular hypertrophy 
along with elevated TG content and increased myocyte 
apoptosis ( 5, 16 ). Taken together, these results suggest 
that SCD might be involved in pathogenesis of lipotoxic 
cardiomyopathy induced by lack of leptin action. 

 Therefore, in the present study, we used the ob/
ob;SCD1  � / �   double knock-out mouse model to test the hy-
pothesis that loss of SCD1 function could be benefi cial in 
the treatment of lipid-induced heart disease. Here, for the 
fi rst time, we show that SCD1 defi ciency signifi cantly im-
proves systolic and diastolic function of left ventricle (LV) 
in leptin-defi cient ob/ob mice. Lack of SCD1 action re-
sulted in decreased neutral lipids and ceramide accumula-
tion in the heart of ob/ob mice. Decreased ceramide levels 
led to a reduction in inducible oxide synthase (iNOS) and 
caspase-3 activities and decreased the cardiac apoptosis 
rate. Inhibition of the apoptotic pathways appears to be 
one of the key mechanisms responsible for improved car-
diac function in ob/ob mice caused by SCD1 defi ciency, 
although a reduction in the whole body adiposity in 
ob/ob;SCD1  � / �   mice may also contribute to the protective 
effects of SCD1 deletion. 

  MATERIALS AND METHODS  

 Animals 
 The generation of SCD1  � / �   and ob/ob;SCD1  � / �   mice has 

been described previously ( 17, 18 ). Pure-bred homozygous 
(SCD1  � / �  ) and wild-type (WT) mice on a B6 background were 
used. To generate the SCD1 mutation in ob/ob mice, male 
SCD1  � / �   mice were bred with female B6 ob/+ mice. The result-
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 Statistical analysis 
 Results were analyzed using one-way ANOVA with student-

Newman posthoc test. A difference of  P  < 0.05 was considered 
signifi cant. Values are presented as means ± SD (N = 6 mice per 
group). 

  RESULTS  

 Reduced body weight and epididymal fat mass in 
SCD1-defi cient ob/ob mice 

 The knock-down of SCD1 gene in ob/ob mice caused 
signifi cant reduction in body weight (  Fig. 1A  ).  Also the 
epididymal fat pad mass was markedly reduced in ob/
ob;SCD1  � / �   relative to ob/ob mice (24.8% of body weight 
vs. 50.2%;  P  < 0.05) ( Fig. 1B ). Both body and fat mass were 
signifi cantly higher in ob/ob;SCD1  � / �   than in WT mice 
( Fig. 1A, B ). The concentrations of glucose, insulin, FFA, 
TG, and cholesterol in plasma were signifi cantly increased 
in ob/ob mice relative to WT mice (  Table   1  ).  SCD1 defi -
ciency decreased plasma cholesterol level in ob/ob mice; 
however concentrations of plasma glucose, insulin, FFA, 
and TG were not signifi cantly different between ob/
ob;SCD1  � / �   and ob/ob mice ( Table 1 ). 

 SCD1 defi ciency improves cardiac function of ob/ob 
mice 

 Transthoracic echocardiography with Doppler fl ow 
analysis was performed in anesthetized 24-wk-old mice. As 
we previously showed ( 15 ), cardiac structural and func-
tional parameters were not signifi cantly different between 
WT and SCD1  � / �   mice (  Table 2  ).  The ob/ob mice had a 
larger LV diameter and signifi cantly increased LV mass 
than the ob/ob;SCD1  � / �  , SCD1  � / �  , and WT mice ( Table 
2 ). However, LV wall thickness was not different between 

using chloroform:methanol:acetic acid:H 2 O (90:8:1:0.8). The 
TLC plates were analyzed with Instant Imager (Packard). 

 Western blot analysis 
 To measure CD36 and FATP protein levels, 100  � g of clarifi ed 

homogenate protein was loaded onto 9% SDS-PAGE. The sepa-
rated proteins were transferred to nitrocellulose membranes that 
were blotted using antibodies (Santa Cruz Biotechnology, Santa 
Cruz, CA). The proteins were visualized using ECL as described 
by the manufacturer (Pierce, Rockford, IL) and quantifi ed by 
densitometry. 

 Measurement of lipids 
 Heart lipids were extracted by the method of Bligh and Dyer 

( 20 ) and measured as described ( 12 ). Briefl y, the lipids were 
separated by TLC on silica gel-60 plates (Merck) in heptane-
isopropyl ether-glacial acetic acid (60:40:3, v/v/vol) with authen-
tic standards. The bands corresponding to TG, diacylglycerol 
(DAG), phospholipids (PL), ceramide, and FFA standards 
(Sigma) were scraped off the plate and transferred to screw-cap 
glass tubes containing pentadecanoic acid as an internal stan-
dard. FA were then transmethylated in the presence of 14% bo-
ron trifl uoride in methanol. The resulting methyl esters were 
extracted with hexane and analyzed by gas-liquid chromatogra-
phy. Total contents were calculated from individual FA content 
in each fraction. 

 SPT activity 
 Activity of SPT in isolated microsomes was measured with 

L-[3- 14 C]serine (American Radiolabeled Chemicals, St. Louis, 
MO) as substrate, as described ( 21 ). The reaction was terminated 
by addition of 1.5 ml of chloroform-methanol (2:1, v/v). The 
radiolabeled product, 3-ketosphinganine, was separated from 
radiolabeled serine by phase partitioning. Sphinganine (25 µg) 
was added as a carrier, followed by the addition of 1 ml of chloro-
form and 2 ml of 0.5 N NH 4 OH. The chloroform layer was 
counted in a scintillation counter (Packard 1900). 

 [ 14 C]palmitic acid incorporation into ceramide 
 The mice were anesthetized, and 0.8 µCi of [ 14 C]palmitic 

acid (55 mCi/mmol; American Radiolabeled Chemicals) per 
20 g body weight, conjugated to albumin, was administered into 
the tail vein ( 12 ). Ten minutes after administration of the label, 
heart samples were taken. The cardiac lipids were extracted, 
and ceramide was isolated as described above. The lipid bands 
corresponding to ceramide were scraped off the plates, and 
the radioactivity was counted in a liquid scintillation counter 
(Packard 1900). 

 Caspase-3 and iNOS activities 
 To measure caspase-3 activity the heart was homogenized in 

10 mM HEPES buffer (pH 7.5). Reaction mixture contained 100 
mM HEPES (pH 7.5), 5 mM DTT, 0.1% CHAPS, 10% sucrose, 16 
mM caspase 3 substrate Ac-ASP-Glu-Val-Asp-p-aniline, and en-
zyme. The amount of p-nitroaniline reversed by caspase-3 activity 
was quantitated at 37°C by measuring the optical density at 405 
nm ( 22 ). iNOS activity was assayed using Bioxytech 22113 kit 
(Oxox International Inc., Portland, OR) ( 23 ). 

 Measurement of FA oxidation 
 Mitochondria were isolated as described by Scaduto ( 24 ). 

Mitochondrial FA oxidation was measured as described using 
[ 14 C]palmitoyl-CoA as substrate ( 25 ). Labeled CO 2  was trapped 
in 10 M KOH and then counted in a liquid scintillation counter 
(Packard 1900). 

  Fig.   1.  Body weight (A) and adipose tissue mass (B) of 6-month-
old WT, ob/ob, and ob/ob;SCD1  � / �   mice. Results are mean ± SD. 
* P  < 0.05 versus WT mice; # P  < 0.05 versus ob/ob mice; N = 6.   
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compared with ob/ob mice ( Fig. 2A ). Changes in SCD ac-
tivity were coupled with the total levels of cardiac 18:1n9, 
16:1n7 FAs ( Fig. 2B ). We measured the mRNA levels of 
SCD1 and cardiac-specifi c SCD4, which are the main iso-
forms of SCD expressed in the heart ( 14 ). In WT mice, 
mRNA level of SCD1 was about 4-fold higher than the 
mRNA level of SCD4 ( P  < 0.001); however, SCD4 gene ex-
pression was signifi cantly increased in the heart of ob/ob 
mice ( Fig. 2C ). SCD1 defi ciency decreased SCD activity 
without affecting SCD4 gene expression ( Fig. 2A–C ). 

 Decreased cardiac steatosis in ob/ob;SCD1  � / �   mice 
 To test whether improvement in LV function in ob/

ob;SCD1  � / �   mice was associated with a reduction in heart 
steatosis, we analyzed intracellular neutral lipid accumula-
tion. The levels of FFA, DAG, and TG in the heart of ob/
ob;SCD1  � / �   were signifi cantly reduced by 39%, 20%, and 
33%, respectively, compared with ob/ob mice but compa-
rable to values noted in WT mice (  Fig. 3A, B  ).  Heart PL 
content was similar in all studied groups ( Fig. 3C ). The 
deletion of SCD1 gene resulted in changes in FA composi-
tion in each of the analyzed lipid fractions. The levels of 
monounsaturated FA in FFA, TG, and PL were reduced by 
20%, 35%m and 28%, respectively, in ob/ob;SCD1  � / �   
compared with ob/ob mice. SCD1 defi ciency also resulted 
in a 23% increase in polyunsaturated FA content in PL 
fraction in the heart of ob/ob mice (data not shown). To 
address reasons for decreased heart steatosis observed in 
ob/ob;SCD1  � / �   mice, we assessed mRNA levels of PPAR � , 
a transcription factor that contributes to increased cellular 
assimilation of lipids ( 26 ). SCD1 defi ciency did not change 
PPAR �  mRNA levels (  Fig. 4A  ),  suggesting that PPAR �  is 
not involved in regulation of fat content in the heart of 
these animals. Next, we measured mRNA levels of GPAT 
and DGAT, which catalyze the fi rst and the fi nal step in TG 
synthesis, respectively. GPAT and DGAT mRNA levels were 
signifi cantly increased in hearts of ob/ob mice, consistent 
with their increased lipid accumulation ( Fig. 4A ). How-
ever, SCD1 deletion decreased the expression of these two 

groups. Because the body mass of the ob/ob mice was 
much larger than either WT or ob/ob;SCD1  � / �   mice ( Fig. 
1A ), the LV mass/body weight ratio was signifi cantly lower 
than WT and ob/ob;SCD1  � / �   mice, which were also lower 
than WT and SCD1  � / �   mice. Ob/ob mice appeared to 
have a signifi cant reduction in systolic function as demon-
strated by the impaired fractional shortening ( Table 2 ). 
SCD1 defi ciency increased the percent of fractional short-
ening by 28% in the heart of ob/ob;SCD1  � / �   compared 
with ob/ob mice. The percent of fractional shortening in 
ob/ob;SCD1  � / �   mice was not different from WT mice. 
The myocardial performance index, a Doppler-based mea-
sure of LV function, was marginally different between ob/
ob and ob/ob;SCD1  � / �   mice. On Doppler fl ow analysis, 
the E/Ea ratio was reduced by 57% in ob/ob mice com-
pared with WT, indicating a diastolic dysfunction in ob/ob 
mice. Although the E/Ea ratio in the heart of ob/
ob;SCD1  � / �   mice was still signifi cantly lower than in the 
WT, SCD1 defi ciency increased the E/Ea ratio by 27% 
in the heart of these mice compared with ob/ob mice 
( Table 2 ). 

 The activity of SCD is decreased in the heart of 
ob/ob;SCD1  � / �   mice 

 The total activity of SCD was more than 2-fold higher in 
the heart of ob/ob mice compared with WT controls 
(  Fig. 2A  ),  whereas SCD1 defi ciency decreased SCD activity 
by 58% in the hearts of double knock-out ob/ob;SCD1  � / �   

 TABLE 1. Plasma parameters in 6-month mice 

WT ob/ob ob/ob;SCD1  � / �  

Glucose (mg/dl) 104.21 ± 8.2 230.25 ± 5.5* 265.62 ± 28.1*
Insulin (ng/ml) 1.23 ± 0.2 9.87 ± 5.2* 8.51 ± 4.6*
FFA (meq/ml) 0.49 ± 0.1 0.68 ± 0.2* 0.61 ± 0.1*
TG (mg/dl) 62.52 ± 9.1 82.53 ± 14.3* 79.18 ± 10.5*
Cholesterol (mg/dl) 112.08 ± 20.4 322.12 ± 28.9* 196.57 ± 15.8* # 

Results are mean ± SD. * P  < 0.05 versus WT mice;  #  P  < 0.05 versus 
ob/ob mice; N = 8.

 TABLE 2. Echocardiographic analysis of heart function and structure of WT, SCD1  � / �  , ob/ob, and 
ob/ob;SCD1  � / �   mice 

WT SCD1  � / �  ob/ob ob/ob;SCD1  � / �  

HR (bpm) 453.13 ± 23.1 473.15 ± 28.4 515.13 ± 36.0 481.33 ± 67.1
AWd (mm) 0.83 ± 0.2 0.85 ± 0.2 0.89 ± 0.1 0.85 ± 0.1
PWd (mm) 0.82 ± 0.1 0.86 ± 0.2 0.92 ± 0.1 0.87 ± 0.1
LVDd (mm) 3.27 ± 0.2 3.56 ± 0.5 3.79 ± 0.3* 3.34 ± 0.2 # 
LV mass (mg) 100.01 ± 4.4 110.64 ± 7.2 128.64 ± 3.9*, † 107.60 ± 3.4 # 
LV mass/BW (mg/g) 3.51 ± 0.3 3.98 ± 0.6 2.01 ± 0.2*, † 2.69 ± 0.4*, †,# 
% Fractional shortening 52.33 ± 4.6 55.02 ± 5.7 43.1 ± 3.7* ,† 55.3 ± 7.8 # 
IVRT (sec) 0.014 ± 0.006 0.016 ± 0.004 0.020 ± 0.002 0.020 ± 0.003
MPI 0.44 ± 0.2 0.49 ± 0.1 0.57 ± 0.2  0.50 ± 0.1
Ea/Aa 1.78 ± 0.5 1.64 ± 0.2 1.33 ± 0.2 1.07 ± 0.2*, †,# 
E/Ea 29.03 ± 4.3 27.36 ± 3.6 17.6 ± 5.1*, †  22.3 ± 2.4*

Results are mean ± SD. * P  < 0.05 versus WT mice;  †  P  < 0.05 versus SCD1  � / �   mice;  #  P  < 0.05 versus ob/ob mice; 
N = 8. HR , heart rate in beats per minute; AWd, anterior wall in diastole; PWd, posterior wall in diastole; LVDd, LV 
diameter in diastole; LV mass/BW, LV mass in milligrams/body weight in grams; Fractional shortening , (LVDd  �  
LVDs)/LVDd; IVRT, isovolumic relaxation time in seconds; MPI, myocardial performance index = the ratio of 
isovolumic contraction and relaxation to ejection time, (MPI = (a  �  b)/b), where a = the time of mitral value 
closure and b = aortic ejection time; Ea, early diastolic maximal velocity from tissue Doppler; Aa, late diastolic 
maximal velocity from tissue Doppler; E, transmitral early fi lling velocity.
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 Decreased rate of de novo synthesis of cardiac ceramide 
caused by SCD1 knock-down 

 SPT is the rate-limiting enzyme in de novo synthesis of 
ceramide ( 27 ). The mRNA levels of both SPT subunits 
(LCB1 and LCB2) were reduced by 70% and 65%, respec-
tively, in the heart of double mutant ob/ob;SCD1  � / �   mice 
compared with ob/ob mice and were even lower than val-
ues measured in WT mice (  Fig. 6A  ).  SPT activity was 
increased in the hearts of ob/ob mice by 60% when 
compared with WT mice and SCD1 defi ciency reduced the 
enzyme activity in the hearts of ob/ob;SCD1  � / �   mice to 
the levels measured in WT animals ( Fig. 6B ). The differ-
ences in the activity of SPT in all of the experimental 
groups paralleled the changes in intracellular level of 
palmitate ( Fig. 2B ), i.e., a preferred substrate of SPT. To 
determine whether SCD1 defi ciency affects de novo syn-
thesis of ceramide in the heart, we analyzed the incorpora-
tion of [ 14 C]palmitic acid into the ceramide fraction. The 
rate of incorporation of labeled palmitate into ceramide 
was decreased in the heart of ob/ob;SCD1  � / �   mice by 
55% compared with ob/ob mice and was comparable to 

genes in ob/ob mice ( Fig. 4A ). FA uptake by cardiac myo-
cytes occurs by two main transport processes: protein-
mediated transport, which accounts for  � 80% of total FA 
uptake, and simple diffusion. CD36 and FATP are the ma-
jor proteins responsible for membrane FA transport. We 
measured both CD36 and FATP mRNA and protein levels 
by real-time PCR and Western blotting, respectively. The 
mRNA and protein levels of both CD36 and FATP were 
signifi cantly lower in the heart of ob/ob;SCD1  � / �   mice 
than in ob/ob controls ( Fig. 4B, C ). These results suggest 
that lower rates of FA transport and reduced lipogenesis 
contribute to the decreased lipid content observed in 
hearts of SCD1-defi cient ob/ob mice. 

 Decreased cardiac FA  � -oxidation in SCD1-defi cient 
ob/ob mice 

 We measured oxidation of [ 14 C]palmitoyl-CoA in heart 
mitochondria. Palmitoyl-CoA  � -oxidation was increased in 
the heart of ob/ob mice in comparison to WT controls 
and signifi cantly reduced in ob/ob;SCD1  � / �   compared 
with ob/ob mice (  Fig. 5A  ).  There were no signifi cant dif-
ferences in the rate of FA oxidation between WT and ob/
ob;SCD1  � / �   double knock-out mice ( Fig. 5A ). To address 
the possible reasons for decreased FA oxidation in the 
myocardium of SCD1-defi cient ob/ob mice, we measured 
mRNA levels of PPAR � , a primary nuclear factor known to 
stimulate genes of lipid oxidation. mRNA levels of PPAR �  
were increased by 25% in the hearts of ob/ob mice com-
pared with WT animals. Interestingly, PPAR �  levels were 
not elevated in the myocardium of ob/ob;SCD1  � / �   mice 
relative to WT mice ( Fig. 5B ). We also measured expres-
sion of CPT1 and ACO, both of which are target genes of 
PPAR � . The levels of both CPT1 and ACO were signifi -
cantly increased in ob/ob mice relative to WT mice. Inter-
estingly, however, they were signifi cantly reduced in the 
hearts of ob/ob;SCD1  � / �   mice relative to ob/ob mice 
( Fig. 5B ). These results suggest that the reduced expres-
sion of oxidative genes in the myocardium of ob/
ob;SCD1  � / �   mice is associated with decreased FA oxida-
tion measured in these animals. 

  Fig.   2.  SCD activity and expression in the heart of WT, ob/ob, and ob/ob;SCD1  � / �   mice. A: For SCD activ-
ity assay, microsomes from the hearts of WT, ob/ob, and ob/ob;SCD1  � / �   mice were incubated with a reac-
tion mixture containing [ 14 C]stearoyl-CoA as a substrate. B: Total FAs were extracted from heart of WT, 
ob/ob, and ob/ob;SCD1  � / �   mice and quantitated by gas-liquid chromatography. C: SCD1 and SCD4 expres-
sion was measured by real-time PCR. Results are mean ± SD. * P  < 0.05 versus WT mice; # P  < 0.05 versus 
ob/ob mice; N = 6. nd, not detectable.   

  Fig.   3.  The total content of FFA and DAG (A), TG (B), and PL 
(C) in the heart of WT, ob/ob, and ob/ob;SCD1  � / �   mice. Lipids 
were extracted, separated by TLC, and quantitated by gas-liquid 
chromatography as described in “Materials and Methods.” Results 
are mean ± SD. * P  < 0.05 vs WT mice; # P  < 0.05 vs ob/ob mice; 
N = 6.   
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in WT controls (  Fig. 7A  ),  whereas SCD1 defi ciency de-
creased iNOS activity by 37% in the hearts of double knock-
out ob/ob;SCD1  � / �   mice compared with ob/ob mice ( Fig. 
7A ). Bcl-2 mRNA levels were increased by 63% in the hearts 
of ob/ob;SCD1  � / �   mice relative to ob/ob mice ( Fig. 7B ). 
Also, activity of caspase-3, an indicator of cardiac apoptosis 
( 31 ), was decreased by 33% in the heart of ob/ob;SCD1  � / �   
double mutant mice relative to ob/ob mice, which had a 
signifi cant elevation of caspase-3 activity ( Fig. 7C ). 

  DISCUSSION  

 High levels of FA and their fatty acyl-CoA esters are det-
rimental to myocardial structure and function ( 32 ). Ec-
topic deposition of lipids in myocardium leads to functional 
impairment observed in obese leptin-resistant ZDF rats ( 4 ) 
and db/db mice as well as leptin-defi cient ob/ob mice ( 1 ). 
Ob/ob mice develop pathologic LV hypertrophy along 
with elevated TG content and increased myocyte apoptosis 
( 5, 14 ). Here, we show that SCD1 defi ciency corrects these 
known pathologies of leptin defi ciency and signifi cantly 
improves LV function in ob/ob mice even though it does 
not affect hypertriglyceridemia or glucose intolerance in 
ob/ob mice ( 18 ). Instead, the improvement in cardiac 
function in ob/ob;SCD1  � / �   mice was accompanied by de-
creased intracellular neutral lipid and ceramide contents 
in the heart and inhibition of the apoptotic pathway(s) 
regulated by lipids in the LV cardiomyocytes. 

 Previously, we showed that SCD1 defi ciency reduces ac-
cumulation of intracellular lipids in skeletal muscle and liver 
by downregulating lipid synthesis and increasing the rate of 
 � -oxidation ( 12, 33 ). The present study reveals that loss of 
SCD1 function decreases FFA, DAG, and TG levels in the 
heart of ob/ob mice; however, the decreased cardiac steato-
sis observed in ob/ob;SCD1  � / �   mice is not due to increased 
FA oxidation, as evidenced by a reduced rate of palmitoyl-
CoA oxidation and decreased expression of CPT1 and ACO 
genes. In SCD1 knock-out mice, reduced FA  � -oxidation is 
coupled with increased glucose oxidation in the heart ( 15 ). 
It is thus possible that similar changes in substrate utilization 

WT ( Fig. 6C ). The total content of ceramide was increased 
by 62% in the heart of ob/ob mice compared with WT 
controls ( Fig. 6D ). SCD1 defi ciency decreased the cer-
amide content by 34% in the heart of ob/ob;SCD1  � / �   
mice compared with ob/ob mice ( Fig. 6D ). 

 SCD1 defi ciency decreases apoptosis in the heart of 
ob/ob mice 

 Ceramide has been shown in recent years to be critically 
involved in cardiac apoptosis ( 28 ). There is evidence that 
ceramide upregulates iNOS and increases NO production, 
which is believed to result in apoptosis ( 2, 3 ). Another 
mechanism for ceramide-induced apoptosis involves down-
regulation of the antiapoptotic factor Bcl-2 and activation of 
caspase-3 ( 29, 30 ). To test whether SCD1 defi ciency reduces 
the rate of ceramide-mediated apoptosis in the heart, we 
analyzed iNOS activity and mRNA levels of Bcl-2 as well as 
activity of caspase-3 in our mice. We found that iNOS activ-
ity was 67% greater in the myocardium of ob/ob mice than 

  Fig.   4.  Expression of lipogenic genes in the heart of WT, ob/ob, 
and ob/ob;SCD1  � / �   mice. A: PPAR � , DGAT, GPAT, and CD36 
(B), and FATP mRNA level was measured by real-time PCR. C: 
CD36 and FATP protein levels were assayed by Western blotting. 
Results are mean ± SD. * P  < 0.05 versus WT mice; # P  < 0.05 versus 
ob/ob mice; N = 6.   

  Fig.   5.  The effect of SCD1 defi ciency on the rate of FA  � -oxidation 
in the heart of ob/ob mice. A: Oxidation of palmitoyl-CoA was 
measured in mitochondria and is presented as amount of labeled 
CO 2  released during oxidation. B: PPAR � , CPT1, and ACO mRNA 
level was measured by real-time PCR. Results are mean ± SD. 
* P  < 0.05 versus WT mice; # P  < 0.05 versus ob/ob mice; N = 6.   
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duced lipogenesis, rather than FA availability, are coupled 
to both reduced FA  � -oxidation and deceased lipogenesis 
in the ob/ob;SCD1  � / �   heart. 

 It has been proposed that excessive deposition of TG in 
nonadipose tissues enlarges the intracellular pool of fatty 
acyl-CoA, thereby providing substrate for nonoxidative 
metabolic pathways, such as ceramide synthesis. Increased 
ceramide levels lead to cell dysfunction and death through 
apoptosis ( 32 ). Lipoapoptosis is also observed in cardio-
myocytes and leads to the development of obesity-related 
heart failure ( 4 ). This effect was observed in obese ZDF 
rats, which at 14 weeks of age have ceramide levels 2- to 
3-fold higher than in control group. Troglitazone therapy 
of obese fa/fa rats decreased TG levels, accompanied by 
reduced ceramide levels ( 4 ). In the present study, we ob-
served reduced TG and ceramide levels in the heart of ob/
ob;SCD1  � / �   mice in comparison to control ob/ob mice. 
Notably, the ceramide level in the hearts of ob/ob;SCD1  � / �   
mice was comparable to values noted in the myocardium 
of WT controls. Ceramide may be formed by hydrolysis of 
sphingomyelin, de novo synthesis via condensation of 
palmitoyl-CoA and serine, glycosphingolipid breakdown, 
or conversion of other sphingolipids ( 27 ). Increased de 
novo ceramide synthesis, through increased expression of 
SPT mRNA, has been shown to be the dominant mecha-
nism of lipid-induced damage/death of pancreatic islets 
of obese ZDF rats ( 34 ). The decrease in ceramide content 
in SCD1-defi cient hearts appears to be due to decreased 
de novo synthesis, as evidenced by decreased SPT activity 
and gene expression, and reduced incorporation of [ 14 C]
palmitate into ceramide. The reduced intracellular palmi-
tate level in the heart of ob/ob;SCD1  � / �   mice resulting 
from decreased lipogenesis and reduced FA uptake may 
also be one of rate-limiting factors in de novo ceramide 
synthesis. Similar effects, including reduced SCD activity 
and decreased intramuscular palmitoyl-CoA content, were 
observed in oxidative skeletal muscles of SCD1  � / �   mice 
and SCD1-defi cient ob/ob mice concomitantly with down-
regulation of SPT activity and reduction in ceramide syn-
thesis ( 12 ). 

  Fig.   6.  mRNA levels of the two SPT subunits (LCB1 and LCB2 
(A), SPT activity (B), [ 14 C]palmitic acid incorporation into cer-
amide fraction (C), and total ceramide content (D) in the heart of 
WT, ob/ob, and ob/ob;SCD1  � / �   mice. LCB1 and LCB2 mRNA lev-
els were measured by real-time PCR. Activity of SPT in isolated mi-
crosomes was measured with L-[3- 14 C]serine as substrate. To asses 
[ 14 C]palmitic acid incorporation into ceramide, [ 14 C]palmitic acid 
was administered into the tail vein of mice, heart samples were 
taken, ceramide was isolated as described in “Materials and Meth-
ods,” and the radioactivity was counted in a liquid scintillation 
counter. Results are mean ± SD. ** P  < 0.05 versus WT mice; 
# P  < 0.05 versus ob/ob mice; N = 6.   

  Fig.   7.  Apoptotic markers in the heart of WT, ob/ob, and ob/ob; 
SCD1  � / �   mice. A: iNOS activity was measured using commercial kit 
Bioxytech 22113. B: Bcl-2 mRNA level was measured by real time 
PCR. C: Caspase 3 activity was quantitated by measuring of the con-
version of p-nitroaniline as described in “Materials and Methods.” 
Results are mean ± SD. * P  < 0.05 versus WT mice; # P  < 0.05 versus 
ob/ob mice; N = 6.   

may occur also in ob/ob;SCD1  � / �   mice, because a decreased 
cardiac FA oxidation is accompanied by increased oxygen 
consumption in SCD1-defi cient ob/ob mice ( 13 ). 

 To elucidate the mechanisms by which SCD1 defi ciency 
reduces lipid content in the leptin-defi cient heart, we ana-
lyzed the expression of the transcription factor PPAR � , 
which contributes to the cellular assimilation of lipids 
( 26 ), and has been shown to be increased in lipotoxic car-
diomyopathies ( 8 ). In the present study, we did not fi nd 
differences in PPAR �  expression between ob/ob;SCD1  � / �   
and ob/ob mice; however, mRNA levels of GPAT and 
DGAT that are involved in TG synthesis were signifi cantly 
lower in the myocardium of ob/ob;SCD1  � / �   than in ob/
ob mice. In addition, protein and mRNA levels of two 
membrane FA transporters, CD36 and FATP, were de-
creased in the heart of ob/ob;SCD1  � / �   mice compared 
with ob/ob controls. These results, together with increased 
plasma TG and FFA levels in ob/ob;SCD1  � / �   mice, sug-
gest that a lower rate of intracellular FA transport and re-
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and adiposity of ob/ob mice. It is thus possible that the pro-
tective effects of SCD1 deletion may also be coupled to the 
lean phenotype of the ob/ob;SCD1  � / �   mice. Further stud-
ies are needed to dissect the contributions of SCD1 to whole 
body adiposity and the heart function.  

 The authors thank Dr. Harini Sampath for critical review of this 
paper. The authors also thank Dr. Timothy A. Hacker from 
Cardiovascular Physiology Core Facility, Department of 
Medicine at UW-Madison for help with echocardiography and 
Doppler measurements. 
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